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Feature Data Assimilation - Theory, Algorithms and Examples 
Roland Potthast and Christian Welzbacher 

Deutscher Wetterdienst, Offenbach, Germany 

The classical setup of atmospheric data assimilation employs direct (in-situ) or indirect 
remote sensing measurements (e.g. satellite radiances) within a variational data 
assimilation framework to find the best possible state of some dynamical system as 
initial condition for forecasting. Modern ensemble data assimilation systems exploit 
the covariance information provided by an ensemble of forcasted states within their 
analysis step. Hybrid approaches such as EnVAR combine the advantages of both 
worlds. When classical continuous variables are measured directly or indirectly, the 
classical approach has been proven to provide high-quality assimilation and 
forecasting results.  

With the growth of temporally and spatially high-resolution measurement data such as 
3D-Volume RADAR as well as hyper-spectral satellite radiances and further 
temporally high-resolved remote sensing techniques, both variational as well as 
ensemble-based approaches are significantly challenged by the strong non-linearity 
of atmospheric processes linked to cloud formation and precipitation processes. The 
complex processes, which take place for example in thunderstorms, do not allow to 
fully fit the full dynamical behaviour of a process to observed phenomena based on 
measurements.  

The goal of feature or object data assimilation is to move from the assimilation of 
snapshots of some process recorded by classical direct or indirect measurements to 
the assimilation of properties or features of a whole process. Often, the process leads 
to the formation of objects such as clouds or thunderstorms, which have a typical 
behaviour with a life cycle which consists of birth, growth, stability and decay.  

Here, we describe a proper mathematical framework for the description and 
assimilation of features of phenomena and objects within an ensemble data 
assimilation systems. Starting from a generic Bayesian approach we describe the 
natural derivation of feature assimilation methods. We then discuss the design and 
properties of feature or object forward operators and their use within an ensemble 
Kalman filter (LETKF) or particle filter (LAPF/LMCPF) based assimilation system. 
Examples will be shown for the popular Lorenz 63 & 96 benchmark systems as well 
as for the convective scale ICON model, which is in preparation for operational use of 
the COSMO consortium with about 40 weather services and, in particular, by 
Deutscher Wetterdienst from Q1/2021.  

  



Space-Time Multigrid for the Maximum Likelihood Ensemble Filter Method 

Xinfeng Gao∗, Milija Zupanski+, Jacob B. Schroder†, Robert D. Falgout‡ 

∗Colorado State University, CFD and Propulsion Laboratory, Fort Collins, Colorado, 
USA  
+Cooperative Institute for Research in the Atmosphere, Fort Collins, Colorado, USA  
†University of New Mexico, Department of Mathematics and Statistics, Albuquerque, 
New Mexico, USA  
‡Lawrence Livermore National Laboratory, Center for Applied Scientific Computing, 
Livermore, California, USA 

In this work, we propose a new method to improve the computational efficiency of 
minimizing a 4D-variational-ensemble optimal control system. The new method em- 
ploys multigrid in space and time to aim for model reduction by successively restrict- 
ing the full system to lower resolutions for more efficient assimilation, while incorpo- 
rating the covariance information during the multigrid process to ensure the essen- tial 
dynamical properties are retained and predicted with sufficient accuracy. This work is 
motivated by applying data assimilation to high dimensional nonlinear engineering 
applications such as turbulent combustion. While the meteorological community 
already employs spatial multigrid methods with data assimilation, applying multi-grid 
reduction in time (MGRIT) to data assimilation is new. Using MGRIT, parallel in time 
can provide further speedups and effectively make use of future architecture.  

The 4D-variational-ensemble assimi-
lation method is based on the 
maximum likelihood ensemble filter 
(MLEF). The cost function is derived 
based on a Gaussian probability 
density function framework and Bayes 
theorem. While the original MLEF is an 
ensemble-based sequential data 
assimilation method, we herein 
introduce the assimilation of data over 
a time window, a summation of 
multiple time terms instead of a single 
time term in the original MLEF, which 
adds the ingredient of strong constraint 
4D-variational assimilation. The core 
concept is achieved by solving the 
nonlinear system using the full 
approximation scheme of the space-
time multigrid method. The proposed 
space-time multigrid is a natural fit for solving the data assimilation optimal control 
system, because the optimization constrained by the nonlinear dynamical model can 
be solved on a sequence of low-resolution space-time operators with computational 
efficiency. This process can be simply depicted by Jm, Jc, Jcst, which denote cost 
functions at various resolutions, in Fig. 1. The technical novelty of the parallel-in-
space-time optimization algorithm will be presented and discussed in detail at the 
symposium.  
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Figure 1: An illustration of MG cycles in time.
Levels 0,1,2,3 indicate the meshes from the finest
to the coarsest in both space and time.
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A method for representing spatially correlated observation errors for wind data 
Oliver Guillet, Yann Michel, Mathilde Moureaux 

Météo-France, Toulouse, France 
 

The objective of this research project is to drastically improve the spatial density of the 
observations exploited in the numerical prediction systems ARPEGE and AROME. 
This requires accurately representing the observation error correlations. To this end, 
we use a technique coming from the field of oceanography, based on the solution of 
a diffusion equation, which we decide to apply on unstructured meshes. 

A first study dealing with scalar data makes use of the finite element method. It 
provides a way to represent horizontal error correlations for scalar data, such as 
brightness temperature from satellite data. Experimental validation was achieved 
using measurements from the infrared imager MSG/SEVIRI, which are assimilated 
both in ARPEGE and AROME. 

We propose to extend this method to the representation of wind error correlations. 
These are vectorial data, meaning that every observation location is associated with 
two values, zonal and meridional. We focus specifically on scatterometer 
measurements, that are available every 25km but only assimilated every 100km. 

First, the wind field is decomposed into one divergent component and and rotational 
component. Then, the scalar correlation operator is applied to each component. 
Finally, the wind field is reconstructed while maintaining the symmetry and the 
positivity of the correlation operator. Experiments show agreement with the analytical 
results. 

In the future, all types of observations will be considered, whether or not they are 
conventional, and we will extend the method to the three dimensional case to address 
the specific case of radars for instance. 

  



Efficient nonlinear data assimilation using synchronization in a particle filter 
Flavia Pinheiro1, Peter Jan van Leeuwen1,2 

1 University of Reading, Department of Meteorology, Reading, United Kingdom. 
2 Colorado State University, Department of Atmospheric Science, Fort Collins, 

Colorado, USA.  
 

Current data assimilation methods still face problems in strongly nonlinear cases. A 
promising solution is a particle filter, which provides a representation of the state 
probability density function (pdf) by a discrete set of particles. To allow a particle filter 
to work in high- dimensional systems, the proposal density freedom is explored. We 
used a proposal density from synchronisation theory, in which one tries to synchronise 
the model with the true evolution of a system using one-way coupling, via the 
observations. This is done by adding an extra term to the model equations which will 
control the growth of instabilities transversal to the synchronisation manifold. In this 
work, an efficient ensemble-based synchronisation scheme is used as a proposal 
density in the implicit equal-weights particle filter, which avoids filter degeneracy by 
construction. Tests using the Lorenz96 model for a 1,000-dimensional system show 
successful results, where particles efficiently follow the truth, both for observed and 
unobserved variables. These first tests show that the new method is comparable to, 
and slightly outperforms, a well-tuned Local Ensemble Transform Kalman Filter. We 
also look at another variant of synchronisation, in which observations back in time are 
also included. The advantage is that the synchronisation has more time to influence 
the particle trajectories, leading to better filter performance. This Synchronisation 
Particle Filter is a promising solution for high-dimensional nonlinear problems in the 
geosciences, such as numerical weather prediction.  

  



Understanding the differences between EnVar and LETKF solvers in an 
operational NWP setting 

Jeff Whitaker1 and Anna Shlyaeva2 
1 NOAA Earth System Research Lab, Boulder, Colorado, USA 

2 Joint Center for Satellite Data Assimilation, Boulder, Colorado, USA. 
 
In the next upgrade, the NOAA operational global hybrid ensemble-variational data 
assimilation system will implement an LETKF solver with model-space vertical 
localization to update ensemble perturbations. Previous work has shown that the 
inferior performance of the serial EnSRF and LETKF solvers compared to the (non-
hybrid) EnVar solver in the NOAA system was primarily due to the of observation-
space localization in the EnKF when assimilating radiances. Now that model-space 
localization has been implemented, the LETKF solver seems to perform slightly better 
than EnVar. In this talk, a hierarchy of simpler models is utilized to understand the 
reason for this. The results show that observation-error (R) localization (used in the 
LETKF) outperforms covariance (B) horizontal localization (used in EnVar) under 
certain conditions. In particular, when the horizontal scale of the Kalman Gain is 
narrower than the horizontal scale of the background-error covariance, R-localization 
performs better since it acts directly to localize the gain matrix. This tends to occur in 
the simple models studied when there are dense and/or accurate obs (the 'strong 
assimilation' limit) and the background-error covariance has heavy tails (the 
covariance is closer to exponential than it is to Gaussian). Both of these conditions are 
present in the operational NWP setting. 
 
 


