Achievements in 2021

Peer-reviewed papers

  1. Tomita, H., M. F. Cronin, and S. Ohishi, 2021: Asymmetric air-sea heat flux response and ocean impact to synoptic-scale atmospheric disturbances observed at JKEO and KEO buoys, Scientific Reports, 11, 469(2021). doi: 10.1038/s41598-020-80665-8
  2. Taylor, J. Honda, T., Amemiya, A., Maejima, Y., and Miyoshi, T., 2020: Predictability of the July 2020 Heavy Rainfall with the SCALE-LETKF, SOLA, 2021, Vol. 17, 48-56.doi:10.2151/sola.2021-008
  3. Xiaoteng Shen, Mingze Lin, Yuliang Zhu, Ho Kyung Ha, Michael Fettwies, Tianfeng Hou, Erik A. Toorman, Jerome P.-Y. Maa, Jinfeng Zhang, A quasi-Monte Carlo based flocculation model for fine-grained cohesive sediments in aquatic environments, Water Research,Volume 194, 15 April 2021, 116953.
  4. Abdulla Mamun, Yongsheng Chen, Jianyu Liang, 2021: Radiative and cloud microphysical effects of the Saharan dust simulated by the WRF-Chem mode. Journal of Atmospheric and Solar-Terrestrial Physics, Volume 219, 2021, 105646.
  5. Honda, T. and T. Miyoshi, 2021: Predictability of the July 2018 Heavy Rain Event in Japan Associated with Typhoon Prapiroon and Southern Convective Disturbances, SOLA, 17, 113-119.
  6. Taylor, J., A. Okazaki, T. Honda,, S. Kotsuki, M. Yamaji, T. Kubota, R. Oki, T. Iguchi, T. Miyoshi, 2021: Oversampling Reflectivity Observations from a Geostationary Precipitation Radar Satellite: Impact on Typhoon Forecasts within a Perfect Model OSSE Framework. J. Adv. Modeling Earth Systems, Vol. 13, 7.
  7. Richard, S., Sun Q., 2021: Bibliometric analysis on mathematics 3 snapshots: 2005, 2010, 2015. Electronic Journal of Applied Statistical Analysis, Vol. 14, Issue 01, May 2021, 90-116. DOI: 10.1285/i20705948v14n1p90
  8. Yamazaki, A., Miyoshi, T., Inoue, J., Enomoto, T., & Komori, N. (2021). EFSO at Different Geographical Locations Verified with Observing System Experiments, Weather and Forecasting, 36(4), 1219-1236.
  9. Okazaki, A., Miyoshi, T., Yoshimura, K., Greybush, S. J., Zhang, F., Revisiting Online and Offline Data Assimilation Comparison for Paleoclimate Reconstruction: An Idealized OSSE Study, JGR Atmospheres, Volume 126, Issue 16.
  10. Jianyu Liang, Yongsheng Chen, Avelino F. Arellano, and Abdulla Al Mamun, 2021: Model Sensitivity Study of the Direct Radiative Impact of Saharan Dust on the Early Stage of Hurricane Earl. Atmosphere 2021, 12, 1181.
  11. Tomizawa, F. and Y. Sawada (2021), Combining ensemble Kalman filter and reservoir computing to predict spatio-temporal chaotic systems from imperfect observations and models, Geoscientific Model Development, 14, 56235635, 2021.
  12. Arakida, H., S. Kotsuki, S. Otsuka, Y. Sawada, and T. Miyoshi, 2021: Regional-scale data assimilation with the Spatially Explicit Individual-based Dynamic Global Vegetation Model (SEIB-DGVM) over Siberia. Prog Earth Planet Sci., 8, 52.
  13. Honda, T., Y. Sato, and T. Miyoshi, 2021: Potential impacts of lightning flash observations on numerical weather prediction with explicit lightning processes, Journal of Geophysical Research: Atmospheres, 126.
  14. Dillon, M. E., P. Maldonado, P. Corrales, Y. GarcĂ­a Skabar, J. Ruiz, M. Sacco, F. Cutraro, L. Mingari, C. Matsudo, L. Vidal, M. Rugna, M. P. Hobouchian, P. Salio, S. Nesbitt, C. Saulo, E. Kalnay, T. Miyoshi, 2021: A rapid refresh ensemble based data assimilation and forecast system for the RELAMPAGO field campaign. Atmos. Res., Volume 264, 2021.
  15. Ruiz, J., Lien, G.-Y., Kondo, K., Otsuka, S., and Miyoshi, T.: Reduced non-Gaussianity by 30-second rapid update in convective-scale numerical weather prediction, Nonlin. Processes Geophys.

Invited Presentations

  1. Takemasa Miyoshi, T. Honda, A. Amemiya, S. Otsuka, Y. Maejima, J. Taylor, H. Tomita, S. Nishizawa, K. Sueki, T. Yamaura, Y. Ishikawa, S. Satoh, T. Ushio, K. Koike, E. Hoshi, and K. Nakajima, Big Data Assimilation: Real-Time Demonstration Experiment of 30-s-Update Forecasting in Tokyo in August 2020, American Meteorological Society 101st Annual meeting, online, January 11, 2021.
  2. Takemasa Miyoshi, Big Data, Big Computation, and Machine Learning in Numerical Weather Prediction, AI Chair OceaniX Webinars, IMT-Atlantique & RIKEN Online Joint Seminar Series (Jointly with Data Assimilation Seminar Series), February 17, 2021.
  3. Takemasa Miyoshi, Fusing Big Data and Big Computation in Numerical Weather Prediction, Climate Research with HPC Forum, SupercomputingAsia 2021, online, March 4, 2021.
  4. Serge RICHARD, Qiwen SUN, Bibliometric analysis on mathematics, 3 snapshots: 2005, 2010, 2015, Himeji conference on partial differential equations, online, March 5, 2021.
  5. Takemasa Miyoshi, Weather Predictability and Data Assimilation: Perspectives Toward General Theory of Prediction, OIST-RIKEN Collaboration 1st Symposium: Green and blue planet -How can ecological research shape our future?, Okinawa, April 6, 2021.
  6. P. Tandeo, P. Ailliot, C. Bello, B. Chapron, T. Chau, R. Knutti, P. Le Bras, P. Naveau, V. Monbet, J. Ruiz, F. S'evellec, A.-M. Treguier, Narrowing uncertainties in climate projections using data science tools, 3rd joint RIKEN & IMT-Atlantique workshop on Statistical Modeling and Machine Learning in Meteorology and Oceanography, online, April 14, 2021.
  7. Takemasa Miyoshi, Seminar "Fusing Big Data and Big Computation in Numerical Weather Prediction", Fluid Mechanics Unit (Professor Pinaki Chakraborty) Seminar, Online, April 20, 2021.
  8. Takemasa Miyoshi, Big Data, Big Computation, and Machine Learning in Numerical Weather Prediction, 14th International Conference on Mesoscale Convective Systems and High-Impact Weather in East Asia (ICMCS-XIV), Online, April 30, 2021.
  9. Kotsuki, S., Terasaki, K., Satoh, M., and Miyoshi, T.: Ensemble-Based Data Assimilation of GPM DPR Reflectivity into the Nonhydrostatic Icosahedral Atmospheric Model NICAM. JpGU 2021, Online, June 3, 2021.
  10. Amemiya, A., T. Miyoshi, 1000-member 18-km-mesh SCALE-LETKF experiment with conventional observations in summer 2020, Asia Oceania Geosciences Society 18th Annual meeting, Online, August 4, 2021.
  11. Miyoshi Takemasa, Fusing Big Data and Big Computation in Numerical Weather Prediction, Data-Centric Engineering Webinar Series, Online, November 3, 2021.

Working with us

Please contact us if you are interested in working on cutting-edge data assimilation research.

Concerns about living in Japan? RIKEN has support for non-Japanese scientists.

Data Assimilation Research Team

7-1-26, Minatojima-minami-machi, Chuo-ku, Kobe, Hyogo 650-0047, Japan
RIKEN Center for Computational Science (R-CCS) Data Assimilation Research Team

E-mail: da-team-desk(please remove here)

To Top